飞机起落架作为飞机重要安全功能部件,是用于飞机起飞、着陆、地面滑行和停放的重要支持系统,是飞机的主要承力构件。它吸收和耗散飞机在着陆及滑行过程中与地面形成的冲击能量,保证飞机在地面运动过程中的使用安全。起落架的技术水平和可靠度对于飞机整体性能和使用安全具有重要影响。
首先与大家分享一段奥地利WFL车铣复合加工中心M65加工飞机起落架的工艺视频。
起落架结构及工艺特点
为提高大型运输类飞机的道面漂浮性,其起落架结构多选用多轮多支柱式结构布局。如伊尔-76飞机起飞重量为t,其起落架系统为油气缓冲式前三点布局,包括一个前起落架支柱和四个主起落架支柱。其中主起落架高约mm,为支柱式单腔缓冲器结构,每个支柱有4个制动机轮并列排列,起落架收起时机轮连同缓冲器旋转90°,以使整组机轮收到圆形机身内。前起落架高约mm,为半摇臂式双腔缓冲器结构,有4个并列的辅助制动机轮,当起落架向前收起时机轮能轻微制动。
起飞重量达t的波音飞机起落架包括一个双轮支柱式前起落架和4个四轮小车式主起落架,其中主起落架分别由2个机翼主起落架和4个机身主起落架组成。前、主起落架高度均超过2m。
在结构和材料选择方面,大型飞机起落架主要结构件选材有钛合金及超高强度钢锻件,材料一般选真空冶炼工艺。超高强度钢材料有钢、M钢及30CrMnSiNi2A等,钛合金选材有Ti6Al6V2Sn、BT22等。M钢作为一种成熟的超高强度钢材料,在现代飞机起落架上获得了广泛应用,国际、国内的各种军用、民用飞机都有选用。另外,钛合金具有比强度高、耐蚀性好的显著特征,在起落架上也有越来越多的应用。对伊尔-76飞机起落架来说,其钛合金用量较大,并且在大型主承力结构件上都有使用。如前、主起横梁即为钛合金大型构件,其中主起横梁尺寸更达××mm,主起外筒结构尺寸也达φ×mm。
总体说来,大型运输类飞机起落架具有以下工艺特点:
(1)结构布局复杂,零件尺寸超大。
飞机起飞重量增大、机体尺寸加大必然导致起落架结构尺寸相应加大。如伊尔-76起落架主要结构件尺寸普遍比中型运输飞机起落架零件大2~3倍。这类结构件在制造时需采用大型起落架专用机加设备,对于热处理、焊接、表面处理等特种工艺也需大型设备来保障。
(2)起落架长寿命要求促使新材料、新工艺广泛应用。
起落架结构与机体同寿是现代大型军民用机的普遍要求,其寿命一般要求达到3万~6万起落。因此,国外民机起落架选材主要应用M钢、钢、高强钛合金及铝合金等高性能材料,在工艺技术方面广泛采用先进的表面强化、表面防护等新工艺技术。如波音型飞机起落架上就应用高速火焰喷涂钨钴合金,空客A/A起落架轮轴(M钢)的非配合表面采用了金属陶瓷防腐涂层等高性能防腐技术。
(3)钛合金、超高强度钢等先进材料加工难度大。
现代飞机起落架主要结构件材料选择以超高强度钢、钛合金为主。这类材料对加工工艺均有严格要求,以避免制造过程中引起零件表面烧伤、污染和氢脆、镉脆等问题,并提高构件表面完整性,保证起落架使用安全及寿命。
(4)主承力构件采用焊接结构或整体结构。
俄罗斯在飞机起落架结构件的制造方面广泛采用焊接结构,从伊尔-76飞机起落架零件来看,前、主起横梁、支柱外筒、活塞杆等主要承力构件均采用焊接结构。由此带来的优点是零件工艺性较好、制造成本相对较低;不利的方面是起落架寿命相对较短,很难与飞机同寿。与之相反,美欧生产的飞机起落架结构件均采用整体锻件加工成形,虽然在制造工艺性及成本等方面不佳,但产品寿命却较长,能够实现与飞机同寿。根据当前发展趋势来看,起落架零件焊接结构的应用仅仅是选择之一,整体结构件才是发展的主要方向。
起落架主要制造技术综述
1起落架超高强度钢零件制造
M钢是一种成熟的航空结构钢材料,现代飞机起落架的主要承力构件起落架外筒、活塞杆、轮轴等大都是选用M钢。M钢热处理强化后,抗拉强度达~MPa(HRC52~56),比30CrMnSiNi2A的抗拉强度高出22.4%,但M钢对应力集中和应力腐蚀比较敏感,因此对制造工艺有较高要求。M钢起落架零件加工技术虽然已较为成熟,但针对大型飞机起落架零件规格超大的实际情况,还涉及一些关键技术的应用,包括:
(1)外筒、活塞杆等大规格锻件锻造技术。
主要需优化M钢大型锻件锻造过程中的制坯、锻造工艺,锻件理化性能检测、锻件超声波探伤等技术,满足大型飞机长寿命、高可靠性能的锻件要求。
(2)超大型起落架零件高效数控加工技术。
一方面,M钢锻件毛坯所有表面均要进行大余量数控“扒皮”加工,内孔型腔材料去除量巨大;另一方面,作为M钢构件都是起落架上的重要受力构件,零件外形结构相当复杂,材料去除率高。因此,对于大飞机起落架超大型零件的切削加工,其工作量就尤显突出,提高数控加工效率十分必要。
(3)大型零件真空热处理及变形控制技术。
热处理是起落架零件加工过程必不可少的强化手段。对起落架大型主承力构件热处理强化效果、增脱碳控制、变形控制等方面尤需